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CALCULATION OF SLOW ENERGY NEUTRON SPECTRA
G.L.Marchuk, G.A.lljasova, V.N.Morozov, V, V;Sm.elov, V.A.Hodakov.

There are three most essential aspects in'the neutron thermalization problem: the develop-
ment of the theory of neutron-matter interaction and.the evalution of corresponding constants,
needed.-for calculation; the development of the computational algorithms for solving of
mathematical problems with needed accuracy; and, at last, the problem of the interpretation of
slow neutron flux spectral data. On the whole, in the present paper the:-questions of second
aspect of the .problem will be considered.

The slow energy neutron scattering problem was formulated by Hurwitz and Cohen [1,2].
The most complete solution of this problem was obtained in the theory of neutron scattering by
nuclei of monoatomic gases [1—4]. In the last years the necessity turned out of a more-
careful analysis of neutron scattering mechanism, taking into account the molecular binding
effect. The results of these investigations were reported in detail at the Brookhaven
Conference on Neutron Thermalization [5].

It should be noted then that in the last years some important experimental data on the
neutron thermalization problem have been obtained [5-7]. After these investigations the.more
careful comparison of experimental data with the theory based on different physical models is
possible, It should be also observed that progress of our knowledge of physical processes in
nuclear reactors makes the development of more perfect and exact methods of the solution of
neutron transport equation evident,

The: peculiarity of the problem of calculating the thermal neutron distribution lies in the
fact, that the low energy neutrons not only lose their energy, but acquire-it. Due to this
effect, the integral operator in the transport equations is Fredholm-type operator. The
transport equation may be solved by spherical harmonics method in P-approximation,
by S, -method, by the method of characteristics, by Monte Carlo method, and others [8—15].

The survey of some -mathematical methods of solution of the transport equation, their
confrontation and comparison of the theory with the experiment [6—7] are-given in present
paper. A spe~ial attention is paid to the-problem of calculating neutron flux.angular distribu-
tions i reeetor cell,
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I. CALCULATIONOF NEUTRON FLUX AND NEUTRON IMPORTANCE BY THE
SPHERICAL HARMUNICS METHOD.

The stationary slow neutron flux in the case of a cylindrical cell may be.described by the
following integro-differential transport equation:

sing(cosy 9¢ 5N 96 ) 4 (r, v)g(r,v,6,¢) —
ar rooy

\{
= 1774y s vy, @50 400w, 0,9 malr,v) v

where'gs (ryv'sy, Q ’-&6) is the.differential scattering cross-section; a(r, v)=ag(r, v) +aa(r,v)
is the:total cross-section; 4 and ¢ are the meridional and azimuthal angles, respectively (Fig.1).
Let the function ¢ (r, v, 6, ¢) be:in the form

(rs v, 6,8) =p(Wlr; v, 6,00 (2)

where p(v) is chosen to take a more complete.account of the neutron flux. ¢(r, v, §, &)
character of variation in variable v. The energy speetrum of formally homogenized -cell was
used -as the function p(v). From above.one -may . conclude; that u(r, v, 6, y) is slightly
dependent on the velocity v over the entire thermalization range O<v<v group-

Divide the range-0<v<‘vgl.oup into m intervals Vj<veviy] (j=1,2 ..., m). Within each energy
group vi<v<vj,] the:function wr, v, 8,¢) can be approximately regarded.as independent of
neutron vel ccity. Then, substituting (2) in equation (1) and-integrating the latter over
everyone of the groups, we obtain - thefollowing system of equations:

sine(coswf& — %.'ZL aé(i) )m(i)(rm(i)(r,vo,w -
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a(i)(r) —:1.‘ f. a(V) p(V)dV 'Y -in‘d p(V)dV
Pi 1 ¥j
v,

oL, Vi s
ai-'l (l','ﬂ"‘ﬂ)"’“l,—el .va+IP(V’)dV’ f1]+1 ag(r, v’iv, Q’+0)dv,
Let us expand-theAfuncti,o'n-asl*](r, 240 in Legendre polynomials
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(uoneos(a’,ﬁ), and neutron flux‘(ﬁ(i) into spherical harmonics, so that

o), v, ,1,)-21;?_0%11_ o) ()Py(cos )+
(4)

+ 1 3 % (2n+1) nam) q, (1) ) p(m)(cosﬂ)
En-l el nm (r)cosmy

P3;is the approximation, when all ¢ B (r) of n34 are neglected: Because of the- ‘scattering
function aé”] (r, ﬂ’—ﬂ) independence of neither medium absorptivity nor of its size; in series
(3) one may take.into account only finite number of terms without counrecting this fact with the
order of approximation. For practice in (3) only two terms.can be taken into account. As

a result for each energy group we obtain-the system of six. {differential equations for q)ﬁ\% (r),
which in a matrix.form isX)

: ‘dfo
BT

do .1 =
alqr_ﬁ.__'rl(p +3]1r=35

doo @11 Soo
O =020, r= P31}, Sy= (0
b2 @33 0

S0 = 4mq (o) + (1-85¢) z oll) ®aki() , .

+l:._l_T'or +Zp=S,

se--8) £ l«pgl{ (ml*l

ag, a1, To, T, %5, 2] are:some matrix coefficients [10, 16].
Excluding the vector r from system (5), we obtain the equation:

pd?e + Ly do ~3e50 4Ll Alpe
dr2 *r KHT ° 0+r2A ®

=_3,,lso+3V( 1 +Ls)) Guis;
I equation (6): 35, A are‘diagonal metrixes,

20 = [0’0, Sa, 5(1/6] =[0, 0; 4h]

x)For the sake -of simplicity, an index of the group number is-omitted.
355
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Equations (6) are to be.completed by the boundary conditions, providing symmetry of
neutron flux at the.cell centre and reflection condition at its boundary [10, 16].

! The. squ n of sys is obtained by Zeidel iteration method, In this method the.
functions S r)and.S T’F at neth iteration step are - calculated in the following scheme:

. . I) .
S(gb),n"“i'”q(])(") + = .‘btgo,n-laol"] +2 (Do(c})n al!
exj o oo

The solution of the multisgroup theory must satisfy the neutron balance relation:

2 6 ol a3 PP ) 0 @
j=10 j=1 o

If the iterating is not accomplished, balance relation (7) is not achieved. If one trying to
obtain balance relation (7) during the iteration process, it is possibleto hasten considerably
the convergence of the process [17). In present paper it was made by the source renormalization.

Each:onegroup equation of system (6) is solved by the method.of the matrix. factorization.

The functions ¢ }}) () =[x, 6, $)AC, thus obtained, > v be used for the. calculation of
effective thermal constants, needed.for further calculations of critical reactor parameters. In
some cases, however, it is:important to know the angular dependence of the neutron-flux
qs(])(r, 6, ¢). In some experimental i nvestigations of thermal neutron'spectra ti.e neutron beams
of the certain directions areused. Formula (4) reveals the - possibility to calculate the
ueutron fluxes in‘any given direction: Below we cite the expressions of neutron fluxes with
different velocity directions (see Fig.l).

806, 0-0)-1_ 0§ W+5080 01
Ui, 6=, yf) = Z—[Q(()lg (r)— g_mé’o) (r)- g_cpg('z)(r)] )

(1) i (8)

#Ue, 6=, 7 1) =L (000 (-3 wé’& (r )+4§¢§§<r) :

o0 ~Log) +;4¢§’§ o B

After the neutron flux ¢(r,v, @, ¢) the neutron importance . qS*(l', v, §,¢) in relation to some
process:is of interest. For example; one can say about the -neutron importance in relation to the
365
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neutron absorption in block, etc.[18—20]. Themeutron importance is a solution of the adjoint

equation, which in multigroup representation has the form:
‘ 3 (i) sing aé*(i) Lr)e*
siné(cos¢ .gi__ - " ) +a\1(r)p™(r, 0,4) —
r
m i+l o+ o .
-12 1"‘05*(1)("’ 6',y’) L—; (r, 2-0") dQ’ =q*(l)(r,0,¢:)

The concrete .form of the right side of equation (9) is connected. with physical process in
relation to which the neutron importance is determined. In particular, for the calculation of the.
neutron importance:.in relation to the block capture, one must put:

s o () in the block
q (3)(139:&1/) "'{0 beyond the block

The solution o system (9) can be obtained-by the same methods, as for system (1').
The neutron importance in the.combination with the neutron flux.distribution function is
widely usedin the perturbation theory (18,21].

II. CALCULATION OF NEUTRON FLUX BY §-METHOD.

To calculate .the thermal neutron flux.in a reactor cell, the S,-method, proposed by
Carlson [12,13], may be used successfully. In this section we.shall discuss the -application of
this method to multigroup system (1’), the anisotropy of scattering will be taken into account
only in transpert approximation.

The solution of the corresponding system of equations with the reflection conditions at the.
cell boundary is realized.by the.following three types of iterating: inelastic transition
iteration, elastic scattering iteration and -boundary condition iteration. The equation iterated
is of the form:

Vyosy 0l AR sing bahn L D, B _o0)
=== TV —6!1' () pstor =Qs,t () (10)

where j is the energy group number (j=1,2....,m), y=cosé,

o = 8 Ny 40 ),

()

m .
08 0= A NG 044,

NOXE=L 7 £ 8006, gy,
(o]

the total transport cross-section is

a(tir) (r) = };:n ) Bil(r) +a§) (r)

the scattoring cross-section is
. Ly
Bl—o] (l‘) = ap ([')

Ial
a1 () —af
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The functions aﬁp (r) and.gli (1) are step functions, which are some constants for each
velocity group; qUiXr) is the linear function in the intervals, limited by the knot points of the
variabler.

The iterating of the-inelestic transitions of S-number consists in the successive solution of
equations /10/ for all j with the functions Qs] (r), being known from the previous iteration
step of inelastic transitions.

The iteration. of the-elastic-collisions of t-number consists in the solution of the system
/10/ for given j with the function N(si,)t-l (r), obtained in the previous iteration of the elastic
scattering. The function S] (r) as aresult of all iterations of elastic collisions is found,

And, at last, by iterating the boundary conditions the function ‘/’s],t' which satisfies the
reflection boundary conditions: ¢(i)(Rgr0up,¢,y) -¢(i)(Rgmup, m—ir,y) is obtained, There is a
condition at the outer boundary of a cell in the iterating of the-boundary conditions:

‘7581(131' (Rgroup»!,‘l’}')%-[qss(,]t),r—l (Rgroup,#,7)+ s ,(%v,)n-l (Rgroup, )] (16)
in all rr/2<:,_[1<rr interval, -

The .computational formulas of the Sp-method, needed for solution of the iterated.
equations (10), were obtained by the general for all geometries scheme, reported in [14]. The
approximate solutions of the multigroup system obtained by these formulas satisfy the
neutron balance condition. In accordance with this scheme - the range  of variation of
variables r, ¢, ¢ is covered by a- net of knot points (i, 45, yp).TheJ{not points ¥p 1n-the
interval [0.1] are chosen as coinciding to Gauss integral formula; the knot points ¢; in the
interval [0,#] are.chosen as equidistant with the.n/n step (the number n coincides the
Sy-approximation); the knot points ry in the interval [O:Rgroup] are chosen arbitrarily
but the condition should be observed, that the points of discontinuity of the functions an]. (r),
Bl and q(i) (r) were among rj; . points.

. 1 r

The integral operators 2”11; dy andrfr: rdr are success . vely applied to the equations of
i-1 Tkel .

system (10) at y=yp with the assumption of linearity dj(]) in ¢ and r in the.intervals

i1, %i] and [r.}, rk]. As a result, the algebraical equations we.obtain, which congect the.
values of ¢(i) in knot points,

Adding to this system the equations, obtained after substituting =z in (10) with the
subsequent application of the operator J:.}:_ r, we have the .complete . system of equations,
from which the values of the functions qs(l') (ry, i, 9p) can be found, using the recur-
rence formulas,

The realization of the iterating discussed.above requires avery large number of iterations.
To reduce-a number of iterations, we used. the corresponding  formulas of thelacceleratipn
of convergence of iterating,

The convergence of boundary Egndidons-iterating was hastened by extrapolation of the
iterative variations of values qu’,r,,n Rero upai ¥p) /i=1,2, ...,/ 2=1/ on the infinite number
of iterations r (Ljusternik method .[24]).

The convergence of elastic collision iterations was hastened by the estimation method .of

iterative 'deviations [14,25]. The idea of this method is in the-approximate«determination of the
365

-6~

Approved For Release 2009/08/26 : CIA-RDP88-00904R000100110013-5



Approved For Release 2009/08/26 : CIA-RDP88-00904R000100110013-5

iterated function deviation from the exact solution of the equation by its variation after one
iteration step. In our case the corresponding formulas can be obtained in the following way.
The solution of equation (10) ¢S] (r,,y) can be represented.in the form:

X A= 8 (10 -85 (109 an
wherelA¢S!t.(r,(/;,y) is the.iterative deviation, corresponding to the iteration of t-number.
Integrating (17) over ¢ and y, we get

N @0-n ) - an ) (18)
where .
N " 1 '
aNs 0L Tay [86h ey (9)

Using (17) and (18), we.obtain from (10):

(i) . G ¢ :
Vl—y2C°S¢TJ_9AfS! V12 siny 9§fs,]t o) Ms(,ln) - (20)

= Bi"i(r)ANs(’jt?_l (l‘);

from which the equation for the iterative deviation Aqséfg, follows:
(j) : §); ) 0
V 1-2cosy 9Bs;t Y12 b Idst ol (1) Ay - (21)
or oy o
~81i0an) +aq D ()
where (i) .
Adgy, () =g1%I(r) (N, ta1 (1) =Ng,¢(r)] (22)
. The boundary conditions of this equation are the previous reflection ones.

The next step is the -estimation of the iterative deviation valuerANsit, (r) or, in other
words, the .approximate solution of equation (21). From the fact, that with ¢sl;t:"¢s])(')
- the function A‘ﬁs,lt -»Q_apd becomes more smoota, we obtain the equation for an estimation of
iterative .deviation A¢S]’b(l',¢.y)=

~ () e S
Vieyooss Do Y125 Sdst oD ag) a0 r (o9

No iterations of the elastic collisions are needed.for the solution of this equation.
The approximate function of average flux, thus obtained:

NI @ N ) 2 aNg ) (24)
where ANs(,it.) (r) ..1; fdlp f]:A‘/’sfft)' (cyyy)dy (25)
(o] [0}

is usedthen as a new approximation in iterated equation (10), All iterating and-introducing of

- iter=tlve corrections last till the ratio ANS’lt, (r) for all r becomes less than the value e
365
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As the function- AESJ.(T) gives only approximate value of the iterative deviation ¢§2t from
the exact solution ¢, then to reduce numerical work, it must be determined in more low-order
approximations in comparison to the approximations, used in calculation of 'qss,lb itself.

In cases when the conditions for introducing of the correction from (24) were not held, the
convergence of elastic collision iterating was hastened by the factorization of the iterated
function by the balance normalization factor. The same:acceleration of convergence was
applied to inelastic transition iterating.

III. MONTE CARLO CALCULATION OF NEUTRON FLUX.

Using the probability characteristics of neutron interactions with nuclei and those .of the
cell geometry, the neutron wandering in the cell is modelized by means of a digital computer

machines At the cell boundary a neutron is reflected mirrorly with no velocity change. The
source-in the thermalization range is constructed with the assumption, that for velocities
V>Veroup @ feutron is scattered (elastically and isotropically in the centre.mass system) by
fixed free nuclei and.that at V>Veroup the neutron spectrum is Fermi spectrum.

Ali probability characteristics of neutren interactions can be tubulated, but it needs a large
volume of an operative computer memory.

In the caseof a gas model for moderator the neutron scattering by nuclei of a certain type
can be modelized as follows. The absolute value of the velocity V, of nuclei with which
neutron collides, is selected. Fot this purpose-in relation to V the following equation is solved

L g4(n+34200), <8
82 ‘
%2‘754 (y)+3¢2(8) +%{¢>3(y) —3(B1+8lé1 (¥) —1(8)] y>f

K=

1 L3 "
52 440 392(B) + 25— 43(BN1 4Bl —61 (8]

where BuV/VT, 4wV /VT, V is the neutron velccity, VT is the most probable nuclear
velocity at the temperature TOK, K is a random number, 0<K<I1, d;n(z)..fz e dt The functions
&n(2) are to be computed beforehand. °
Then the angle g between the neutron motion and the nucleus as a target direction is
selected:
cosf=d_ {1+a?~IK(1+2)3+(1-K) [1—-q/|3] s
P
a=V5/V. The second -angular parameter is determined from the condition of equivalence of
azimuthal directions, From the known neutron and nuclear velocities V, 'VO the velocity of a
scattered neutron is calculated by
Ve L [V aM¥g +M|V-V |8 |
M+l
& is a random isotropic unit vector.
365
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It isknown a number of ways to store the information on the flux during the reutron wander-
ing [25). As a rule, the spectrum in the moderator is rapidly extablished. The difficulties are
connected with greatly absorbing domains of a small volume, The calculation of the flux in
any part of the cell may be significantly hastened, if one takes into account the contribution of
each collision; after which a:possible path of neutrcu scattered crosses its volume. 11 the .
cells - with moderator volume predominance the computations can be significantly accelerated
when replacing the - moderator regions, remote from the block, by the corresponding surface
sources, The characteristics of sources (spectrum, angular distribution etc) are-to be.
computed beforehand. In onedimentional cells it is realized in an especially simple way.
The.graphite~uranium cell was computed-by this method (page-13).

As arule, to get the exactness of computation, practically accepted, (7-10)-104 collisions
are:sufficient. The results of computations, in which more than 105 collisions were selected,
are shown in Figs 12,13. As for spectrum in graphite (Fig.13b) further corrections were made,
Below the approximate values of standard errors of some:characteristics of the fluxes
computed are represented (in %):

Cell Zone (1) (2) (3) (4) (5) (6) (M
Uraniumewater Block 0.89 0.83 2.2 1.4 2.4 5.9 3.6
Moderator 0.14 0.36 0.94 0.55 1.1 23 2.1
Uranium-graphite Block 0.73 0.89 2.9 1.3 1.9 2.4 3.5

(1) - total flux, (2) — total absorption, (3),(4),(5),(6),(7), — fluxes of variable x= V/m
in intervals (0.1),(1.3),(2.3),(34),(4.8), respectively, T,=300°K.

In computatiors three-order generator of pseudorandom numbers of a known type: Xp+1= Xy,
(mod M) was used. We put p=59, M=224, Xo=1 and Xy=3. The generator was tested by the
computation of Maxwellian spectrum in a cell, with no absorption taken into account, and by
Kolmogorov criterion {2, w2 at the different sample sizes.

The results are satisfactory.

Itis useful to smooth the density functions, obtained by statistical method. The following
way is very useful too [26]. The empirical function of probability distsibution F(x), cor-
responding to the-.calculated density function, is considered. At the knot point Xk, ks,

S+, v« , n=s (n+l is the total number of knots) F(xy) is geplaced by P(xk), where Pg(x)is a
polynomial of certain degree, which minimizes the value S [F(x); _P(xk+i)]2. By

differe ntiating a more - smooth distribution function, thus clozn.sstructed, the-smoothed density
function is obtained. We-used the polynomialsof the fifth degree at s=8 /n=80/.

IV. RESULTS OF CALCULA TIONS

The 'described-above methods were used for the calculation of the space-energy slow neutron
distribution along the - cells of uranium-water and uranium-graphite lattices, studied
experimentally by Mostovoi [6,7].

365
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The uranium-water assembly is a set of blocks of natural uranium 3.5cm in diameter, located
in the sites of a triangular lattice with the 5.5cm spacing.

The uranium-graphite -assembly consists of the same uranium blocks, located in the sites of
a square-lattice with 20cm spacing. In the experiments the wanium blocks are separated by
an aluminium layer from the moderator,

In calculations the experimental hexagonal and square cells were-replaced by the equivalent
circular threezone cells.

Now we proceed todescribing the calculations of cells in P3 — approximation. The
calculation of slow neutron flux was performed in the energy range 0<E<ligroup =0.67 ev in
15-group approximation. The sources of thermal neutrons caused by slowing down were
calculated with the assumption, that at E>Egroup the neutron spectrum is Fermi spectrum and
molecular binding effect at E>E gy is not of importance. The inelastic molecular scattering
and neutron interaction with the -crystal lattice at 0<E<E gpoyp Were-taken into account on the
basis of Turchin results [22,23].

For fissionable isotopes the deviation of the capture cross-section from 1/v low was
taken into account.

The space distributions of average thermal neutron flux are given in Figs 2,3.

\Y
d)oo(r)-al; ggm“pdqus(r,v,e,uf)dn ,

and also directed fluxes /see (8)/:

fbll(r)=fv%(r,v,9 =0)dV, in) (r)-‘fv gl;s(r,v,ﬁaé'_, ¢=0)dV,
o] [o]

"’(ZU(’)’fv Bb(r,v,0=1 , 6=D)dV m(”)() FR(e,v,0-I
X8 LTV, 0oF, o=pAV L 0={T6(0v,0-F, gen)dV

It is seen from Figs 2 and 3, that neutron flux ®11(r) (neutron velocities are parallel to a cell
axis) is "’eaten out”’much stronger in the block, than the average flux ®.(r). From physical
point of view, this results from the fact, that the capture probability of neutrons moving in
a block along its axis, is greater, than for neutrons of other directions. As the distance from
block increases, @1(r) becomes larger, than B, (r), and-this fact can be also simply
explained.from physical point of view,

Let us discuss in detail curve3.(Figs 2 and 3). {t describesa neutron beam, directed along
a cell diameter. The.left branch of this curve (r<0) corresponds to the neutrons, moving
towards the cell axis; lbi(”)(ﬁ , and right one .does to the neutrons moving in an opposite direction
@L(O)(r). inthe most part of its path in a block, the neutron beam loses, as a result of capture,
more neutrons, than acquires from other beams due:to scattering. This results in a monotone
character of curve 3.in a block. The disturbance of the beam monotony when leaving the
block is connected with the general increase of neutron density near the block boundary.
Crossing the aluminium layer, the .beam dﬁ(_o)(r) does not ccnsiderably change due to absorption
apd-scattering, and the.abrupt decrease of curve-3.in a layer is dueto its geometry.

365
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The distribution along diameter of those neutrons, velocities of which are:perpendicular to
an axial cross-section of the cell, qi”/‘?)(r) is represented by curve 4 in Fig.2. 1t is evident,
that at r=0 <l§€°)(0)=¢>f"/2)(0)=(l>l(”)(0)-

Now we proceed to an analysis of the thermal neutron energy spectra in cells /Figs 4-9/.
The abscissa is plotted in variable 1/x (x-v/\ka'T T=300°K). The ordinata is the neutron
density n(1/v)=v2n(v)=ve(v). In Figs 4,6,8 the neutron. spectra at the.centre of the cell an shown
The curve { represents the neutron energy distribution, averaged over the angles

]

Efvd,(r:(),v,ﬁ)dﬂ. The curve 2 corresponds to neutron beam energy distribution along the
cell axis vg(r=0,v,6=0) and curve:3.presents the spectrum of the neutron beam perpendicular to
the cell axis v:,s(rnO,v,()-z”_). Trom physical considerations spectrum 2 is to be harder than
global spectrum 1, but speetrum 3 — softer.

It is well in agreement with the calculations. The spectra given are compared with
experimentally measured ones. The experimental method was such-that the beams extracted
from the blocks were-mainly of neutrons, directed along the ‘axis of the cell. It is natural
therefore to compare the experimental spectra with the functions vep(r=0,v,f=0).

However, one should expect that the-experimental spectrum will be a bit softer than the
theoretical one, since the neutron beam extracted has the neutrons of other directions. In the
uranium-water cell this prediction is confirmed by the calculation. In the - uranium-water cell
this effect is weak due to a considerable softening of the spectrum calculated in the moderator
as compared with the experiment. The origin of this softening is not yet clear,

The .comparison of the same experimental spectrum with the global spectrum L_fvé(rao,v,a,zj,)dﬂ
reveals that the experimental one.is harser. In Figs 5,7,9 the comparison of the‘the”oretical and
experimental spectra at the cell boundary is given. Calculations show the neutron flux at the
cell boundary is practically isotropic. Figsl0, 11 present space-and energy distribution of the
neutron importance-in‘relation to the-absorption in a block for the uranium-water cell. The
presence of maxima in the curves 1 and 2 (Fig.tl) in therange 3.0<x<4.0 is caused by the
resonance in the absorption crossesection U235, It is of interest to confront all the three
methods given above. For this purpose the thermal neutron fluxes in uranium-water and
uranium-graphite cells were calculated by each method. The computations were made on the.
basis of gas model, since in this case the scattering indicatrix can be selected by Monte.
Carlo method completely. The results of the computations are shown in Figs 12 and 13. The
mutual attachment of the speetra calculated by different methods was made-in the block, as
well as in the moderator at the maximum. There is a good agreement between the spectra given
within the errors of the methods.

We are much obliged to Dr. V.J,Mostovoi and Dr. V.S.Dikarev for their interest in the present
work and.useful discussions during its realization,
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Inerxy distridution of therma) neutrons at the centre 0f ureni-
um-graphite oell (Pig.6- Tu5l5 K FipeS- Tabl3'X )
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o— experimental points
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Comparison of the neutron ene: spectra, ocalculated by different
msthods (P1ig.,I2-uregium-vater ool1, a330K; Fia s —uranius-gra-
phite ce1X, T523°K).  Te3237Ks Mg

caloulation by the spherical harmonics method(P,~a
ximation, IS5 groups), A-oalculation by 8 nthod(ae-npﬁom
tion, IO groups). o- Monte-Oarlo calowlaBion.
lg neutron apecstrum in the block volume
b) nsutron spsotrum in the moderator volume
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